Advantages and drawbacks of nanospray for studying noncovalent protein-DNA complexes by mass spectrometry.
نویسندگان
چکیده
The noncovalent complexes between the BlaI protein dimer (wild-type and GM2 mutant) and its double-stranded DNA operator were studied by nanospray mass spectrometry and tandem mass spectrometry (MS/MS). Reproducibility problems in the nanospray single-stage mass spectra are emphasized. The relative intensities depend greatly on the shape of the capillary tip and on the capillary-cone distance. This results in difficulties in assessing the relative stabilities of the complexes simply from MS(1) spectra of protein-DNA mixtures. Competition experiments using MS/MS are a better approach to determine relative binding affinities. A competition between histidine-tagged BlaIWT (BlaIWTHis) and the GM2 mutant revealed that the two proteins have similar affinities for the DNA operator, and that they co-dimerize to form heterocomplexes. The low sample consumption of nanospray allows MS/MS spectra to be recorded at different collision energies for different charge states with 1 microL of sample. The MS/MS experiments on the dimers reveal that the GM2 dimer is more kinetically stable in the gas phase than the wild-type dimer. The MS/MS experiments on the complexes shows that the two proteins require the same collision energy to dissociate from the complex. This indicates that the rate-limiting step in the monomer loss from the protein-DNA complex arises from the breaking of the protein-DNA interface rather than the protein-protein interface. The dissociation of the protein-DNA complex proceeds by the loss of a highly charged monomer (carrying about two-thirds of the total charge and one-third of the total mass). MS/MS experiments on a heterocomplex also show that the two proteins BlaIWTHis and BlaIGM2 have slightly different charge distributions in the fragments. This emphasizes the need for better understanding the dissociation mechanisms of biomolecular complexes.
منابع مشابه
Studying noncovalent protein complexes by electrospray ionization mass spectrometry.
Electrospray ionization mass spectrometry has been used to study protein interactions driven by noncovalent forces. The gentleness of the electrospray ionization process allows intact protein complexes to be directly detected by mass spectrometry. Evidence from the growing body of literature suggests that the ESI-MS observations for these weakly bound systems reflect, to some extent, the nature...
متن کاملSurface induced dissociation yields quaternary substructure of refractory noncovalent phosphorylase B and glutamate dehydrogenase complexes.
Ion mobility (IM) and tandem mass spectrometry (MS/MS) coupled with native MS are useful for studying noncovalent protein complexes. Collision induced dissociation (CID) is the most common MS/MS dissociation method. However, some protein complexes, including glycogen phosphorylase B kinase (PHB) and L-glutamate dehydrogenase (GDH) examined in this study, are resistant to dissociation by CID at ...
متن کاملDoes chemical cross-linking with NHS esters reflect the chemical equilibrium of protein-protein noncovalent interactions in solution?
Chemical cross-linking in combination with mass spectrometry has emerged as a powerful tool to study noncovalent protein complexes. Nevertheless, there are still many questions to answer. Does the amount of detected cross-linked complex correlate with the amount of protein complex in solution? In which concentration and affinity range is specific cross-linking possible? To answer these question...
متن کاملAnalysis of noncovalent and covalent protein-ligand complexes by electrospray ionisation mass spectrometry
متن کامل
Quantitative evaluation of noncovalent chorismate mutase-inhibitor binding by ESI-MS.
Electrospray time-of-flight mass spectrometry was used to quantitatively determine the dissociation constant of chorismate mutase and a transition state analogue inhibitor. This system presents a fairly complex stoichiometry because the native protein is a homotrimer with three equal and independent substrate binding sites. We can detect the chorismate mutase trimer as well as chorismate mutase...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Rapid communications in mass spectrometry : RCM
دوره 16 18 شماره
صفحات -
تاریخ انتشار 2002